设计描述:
文档包括:
Word版设计说明书1份,共71页,约37000字
开题报告一份
外文翻译一份
PPT答辩一份
CAD版本图纸,共7张
垃圾运输车抓斗桥式搬运起重机构设计
摘 要
该设计介绍了垃圾搬运起重机的主要组成结构及其各结构的作用。主要对 小车和大车的驱动系统,起升系统和桥架进行了优化设计。为了减轻起重机自重,并且使结构紧凑,本设计针对大车,小车不同的驱动要求分别采用了分别驱动方式和集中驱动方式。驱动系统则统一采用制动器、减速器和电动机组合成一体的“三合一”驱动型式设计,其中重点在于选择各成品部件,并根据其特性和技术参数选择匹配的小车架。针对起升机构,本设计进行了起升电机,减速器和制动器的选用以及卷筒和钢丝绳的设计和校核,使其满足起重量,起升速度的要求,达到初定的工作级别。桥身采用偏轨箱形双梁,这样设计的好处在于不仅有效的减轻了起重机整体自重,更能明显得增强桥身的刚度,使桥身不易变形,延长起重机的使用寿命。
关键词 搬运起重机;驱动系统;起升机构
BridgeWaste Handling Grab Crance Lifting Mechanism Design
ABSTRACT
The main structure and its action of bridge waste handling grab crane are designed. Trolley and the bridge truck driving system and the bridge were optimized to alleviate crane weight, and make compact structure. The design adopts the method of being separately driven and being driven together, according to the different requirements of trolley and bridge truck. Driving systerm is made up of braker, reducer and motor, which is the type of three in one. The design focuses on the choice of finished parts, and according to its characteristics and technical parameters, the matching trolley frame is selected. The selection and check of hoist motor, reducer and braker are made. And then the design and check of the rope and drum that meet with requirements of lifting weight and the rate. And then achieve to initial working level. Bridge adopts bias-rail box-beams, the benefits of this design not only is effective in reducing the overall crane weight, but also can increase the stiffness of bridge, which make bright not to deform easily, extend the life of the crane.
Key words Waste Handling Grab Crane;Type Driving;Lifting Mechanism
目录
摘要 I
Abstract II
第1章 绪 论 1
1.1 课题背景 1
1.2 起重机的发展历史 1
1.3 垃圾搬运起重机的发展背景及现状 1
1.4 起重机的发展趋势 2
1.4.1 大型化和专用化 2
1.4.2 模块化和组合化 2
1.4.3 轻型化和多样化 3
1.4.4 自动化和智能化 3
1.4.5 成套化和系统化 4
1.4.6 新型化和实用化 4
1.5 垃圾搬运起重机设计的主要工作 5
第2章 桥式垃圾搬运起重机的概况 6
2.1 桥式垃圾搬运起重机的功用 6
2.2 桥式垃圾搬运起重机的结构 6
2.2.1 起升机构 6
2.2.2 起重机运行机构 6
2.2.3 桥架的金属结构 6
2.2.4 垃圾抓斗 7
2.3 垃圾搬运起重机作为非标特种起重机具有的特点 8
2.4 本章小结 8
第3章 起升小车的设计 9
3.1 起升机构计算 9
3.1.1 钢丝绳 9
3.1.2 电动机 10
3.1.3 减速器 12
3.1.4 制动器 13
3.1.5 联轴器 15
3.1.6 起制动时间验算 15
3.1.7 卷筒 17
3.1.8 钢丝绳在卷筒上的固定 19
3.2 运行机构计算 20
3.2.1 运行阻力的计算 20
3.2.2 电动机的选择 21
3.2.3 减速器的选择 24
3.2.4 制动器的选择 25
3.2.5 联轴器的选择 25
3.2.6 运行打滑验算 26
3.3 本章小结 27
第4章 大车运行机构的设计 28
4.1 运行阻力的计算 28
4.1.1 摩擦阻力Fm 28
4.1.2 坡道阻力Fp 28
4.1.3 风阻力Fw 29
4.2 电动机的选择 29
4.2.1 电动机的静功率 29
4.2.2 电动机初选 29
4.2.3 电动机的过载校验 29
4.2.4 电动机的发热校验 30
4.2.5 起动时间与起动平均加速度验算 31
4.3 减速器的选择 31
4.3.1 减速器的传动比 31
4.3.2 标准减速器的选用 32
4.4 制动器的选择 32
4.5 联轴器的选择 33
4.6 运行打滑验算 33
4.6.1 起动时按下式验算 34
4.6.2 制动时按下式验算 34
4.7 本章小结 35
第5章 主动轴及车轮的设计计算 36
5.1 轴的概述 36
5.1.1 轴的用途 36
5.1.2 轴设计的主要内容 36
5.1.3 轴的材料 36
5.2 轴的设计及其校核 36
5.2.1 拟定轴上零件的装配方案 36
5.2.2 轴的强度计算 37
5.3 小车驱动机构主动轴的设计 38
5.4 车轮的计算 40
5.4.1 车轮踏面疲劳计算载荷 40
5.4.2 车轮踏面疲劳计算 41
5.5 本章小结 42
第6章 主梁的设计计算 43
6.1 作用于主梁上的载荷 43
6.2 计算载荷及其组合 43
6.3 主梁的强度计算 43
6.4 主梁的刚度计算 46
6.5 疲劳计算 47
6.6 本章小结 47
结 论 49
附录 52
|