设计描述:
文档包括:
word版设计说明书一份,42页,约15000字
CAD版本图纸,共3张
摘 要
非球面光学零件可以获得球面光学零件无可比拟的良好的成像质量,在光学系统中能够很好的矫正多种像差,改善成像质量,提高系统鉴别能力,它能以一个或几个非球面零件代替多个球面零件,从而简化仪器结构,降低成本并有效的减轻仪器重量。可广泛应用于各种现代光电子产品,几乎在所有的工程应用领域中,无论是现代国防科技技术领域,还是普通的工业领域都有着广泛的应用前景,开展光学玻璃非球面零件的高精密光学技术研究具有重要的理论意义和现实指导意义。
本次设计研究内容为非球曲面的超精密加工系统的研究,非球曲面的超精密加工工艺的研究。重点内容是非球曲面加工超精密磨削装置的设计,主要为砂轮主轴装置的选取,中心高位调机构的设计,各个运动的传动设计以及砂轮运动轨迹的分析。在研究过程中详细的分析了影响零件加工精度的各种主要因素并提出相应的控制措施,尤其是对非球曲面的磨削加工设备进行详细设计,并简要分析了非球曲面加工机床的数控及伺服控制系统等。
关键词:非球曲面;超精密加工;微调机构;金刚石砂轮
Abstract
The aspheric optical parts can get good image quality, good optical system correction of various aberrations, to improve the image quality, and improve the system ability to identify it to one or several non-spherical spherical optical parts unparalleledparts instead of a number of spherical parts, thus simplifying the instrument structure, reduce costs and reduce instrument weight. It’s widely used in many realms, such as national defense, machine chemical and aviation. It’s very useful to develop the grinding theory and important practical significance to study the high precision grinding methods about the optical glass aspheric surface parts.
This article discussed in the ultra-precision grinder, the CNC operation program,and the aspheric surface optics parts’ grinding craft. The center height micro-adjusting mechanism and the drive system. In the process of the research, we analysis it detailed that the main factor influence the process precision of the parts, and make something to solve it, especially for the precision grinding equipments, and analysis it simplify for the precision machine tool for aspheric surface optics parts and the servo-control system and the other technology.
Key words: the aspheric surface; ultra-precision machining; the micro-adjusting mechanism; diamond wheel
目 录
摘要 I
目录 III
第1章 绪论 1
1.1非球面加工的优点和意义 1
1.2非球曲面研究概述 1
1.2.1 非球面的定义 1
1.2.2 非球面应用领域 2
1.2.3 非球曲面加工技术近年来发展概况 2
1.2.4 非球曲面加工的发展趋势和研究方向 4
1.3 非球面光学零件材料及其加工方法 4
1.3.1 计算机数控单点金刚石技术(SPDT) 5
1.3.2 超精密磨削技术 5
1.3.3 计算机控制光学表面成型(CCOS)技术 5
1.3.4 光学玻璃模压成型技术 6
1.3.5 光学塑料成型技术 6
1.3.6 其他非球面加工技术 6
1.4非球面精密磨削加工理论 6
1.4.1 微量加工理论 7
1.4.2 脆性材料的延性域磨削 8
第2章 超精密非球面加工方案选择及误差分析 10
2.1 超精密非球曲面磨床的总体布局 10
2.1.1 空气主轴系统 10
2.1.2 伺服进给系统 11
2.1.3 微位移测量系统 11
2.1.4 中心高微调系统 11
2.1.5 数控系统 11
2.2 非球曲面磨削方案的确定 12
2.2.1加工零件的技术参数 13
2.2.2 非球曲面磨削方案确定 13
2.3 加工误差分析 14
2.3.1 中心高微调机构对零件加工精度的影响 15
2.3.2 在X轴上砂轮安装误差对零件加工精度的影响 17
2.3.3 砂轮半径误差对零件加工精度的影响 18
2.3.4 及 综合作用时对零件面形精度的影响 19
第3章 非球面磨削装置设计 21
3.1 超精密加工的关键技术 21
3.1.1 超精密主轴 21
3.1.2 超精密导轨 21
3.1.3 传动系统 22
3.1.4 超精密刀具 22
3.1.5 超精密加工其他技术 23
3.2 传动系统设计 23
3.2.1 磨削参数的计算 23
3.2.2 导轨的整体设计 24
3.2.3 传动参数的计算 25
3.3 磨削系统设计 25
3.3.1 系统结构设计 26
3.3.1 中心高微调机构设计 27
3.3.2 砂轮主轴的选择 28
结 论 31
致 谢 32
参考文献 33
CONTENTS
Abstract I
CONTENTS III
Capter 1 Introduction 1
1.1 The meaning of the processing of aspheric surface 1
1.2 The introuduction of the aspheric surface’s research 1
1.2.1 Definition of aspheric surface 1
1.2.2 Application of aspheric surface 2
1.2.3 The development of aspheric surface in recent years 2
1.2.4 Aspheric pricesssing trends and research directions 4
1.3 The parts’ material and the processing method 4
1.3.1 Computer-controlled single-point diamond technology(SPDT) 5
1.3.2 Ultra-precision grinding technology 5
1.3.3 Computer Controlled Optical Surfacing(CCOS) 5
1.3.4 Optical glass compression molding technology 6
1.3.5Optical plastic molding technology 6
1.3.6 Other processing technology 6
1.4Aspheric surface precision grinding theory 6
1.4.1 Trace processing theory 8
1.4.2 Ductile-regime grinding of brittle materials 8
Capter 2 Ultra-precision aspheric processing alternatives and error analysis 10
2.1 Ultra precision aspherical surface grinding machine layout 10
2.1.1 Air spindle system 10
2.1.2 Servo feed system 11
2.1.3 Micro-displacement measurement system 11
2.1.4 Center high tuning system 11
2.1.5 Numerical control system 11
2.2 Aspherical surface grinding scheme 12
2.2.1 Processing part of the technical parameters 13
2.2.2 Aspherical surface grinding scheme 13
2.3 Processing error analysis 14
2.3.1 Center high fine-tuning mechanism on the impact of cutting accuracy 15
2.3.2 In the X axis on the wheel on the impact of cutting accuracy 17
2.3.3 Wheel radius error on the part of machining precision 18
2.3.4 Both and on the part 19
Capter3 Aspheric tooling design 21
3.1 Ultra-precision machining technology 21
3.1.1 Ultra-precision spindle 21
3.1.2 Ultra-precision guide 21
3.1.3 Drive system 22
3.1.4 Ultra-precision cutter 22
3.1.5 Other technology 23
3.2 Transmission System Designing 23
3.2.1 Grinding parameters 23
3.2.2 The overall design of the Rails 24
3.2.3 Calculation of transmission parameters 25
3.3 Grinding systems design 25
3.3.1 System architecture design 26
3.3.1 Center high micro-adjusting mechanism design 27
3.3.2 Wheel spindle design 28
Conclusion 31
Thanks 32
References 33
|